

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	shell 1.0.1 documentation

shell’s Documentation

“”“A better way to run shell commands in Python.”“”

Built because every time I go to use subprocess [http://docs.python.org/2.7/library/subprocess.html], I spend more time in the
docs & futzing around than actually implementing what I’m trying to get done.

Philosophy

	Makes running commands more natural

	Assumes you care about the output/errors by default

	Covers the 80% case of running commands

	A nicer API

	Works on Linux/OS X (untested on Windows but might work?)

Contents:

	shell Tutorial
	Installation

	Quickstart

	Getting Started

	What Now?

	Shell API
	shell

	Testing shell
	Setup

	Running the tests

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shell 1.0.1 documentation

shell Tutorial

If you’ve ever tried to run a shell command in Python, you’re likely unhappy
about it. The subprocess module, while a huge & consistent step forward
over the previous ways Python shelled out, has a rather painful interface.
If you’re like me, you spent more time in the docs than you did writing working
code.

shell tries to fix this, by glossing over the warts in the subprocess
API & making running commands easy.

Installation

If you’re developing in Python, you ought to be using pip [http://www.pip-installer.org/en/latest/]. Installing (from
your terminal) looks like:

$ pip install shell

Quickstart

For the impatient:

>>> from shell import shell
>>> ls = shell('ls')
>>> for file in ls.output():
... print file
'another.txt'

Or if you need more control, the same code can be stated as...
>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('ls')
>>> for file in sh.output():
... print file
'another.txt'

Getting Started

Importing

The first thing you’ll need to do is import shell. You can either use
the easy functional version:

>>> from shell import shell

Or the class-based & extensible version:

>>> from shall import Shell

Your First Command

Running a basic command is simple. Simply hand the command you’d use at the
terminal off to shell:

>>> from shell import shell
>>> shell('touch hello_world.txt')

The class-based variant.
>>> from shall import Shell
>>> sh = Shell()
>>> sh.run('touch hello_world.txt')

You should now have a hello_world.txt file created in your current
directory.

Reading Output

By default, shell captures output/errors from the command being run. You can
read the output & errors like so:

>>> from shell import shell
>>> sh = shell('ls /tmp')
Your output from these calls will vary...
>>> sh.output()
[
 'hello.txt',
 'world.py',
]
>>> sh.errors()
[]

The class-based variant.
>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('ls /tmp')
>>> sh.output()
[
 'hello.txt',
 'world.py',
]
>>> sh.errors()
[]

You can also look at what the process ID was & the return code.:

>>> sh.pid
15172
>>> sh.code
0

Getting a 0 from sh.code means a process finished sucessfully. Higher
integer return values generally mean there was an error.

Interactive

If the command is interactive, you can send it input as well.:

>>> from shell import shell
>>> sh = shell('cat -u', has_input=True)
>>> sh.write('Hello, world!')
>>> sh.output()
[
 'Hello, world!'
]

The class-based variant.
>>> from shall import Shell
>>> sh = Shell(has_input=True)
>>> sh.run('cat -u')
>>> sh.write('Hello, world!')
>>> sh.output()
[
 'Hello, world!'
]

Warning

You get one shot at sending input, after which the command will finish.
Using shell for advanced, multi-prompt shell commands is likely is not
a good option.

Chaining

You can also chain calls together, if that suits you.:

>>> from shell import shell
>>> shell('cat -u', has_input=True).write('Hello, world!').output()
[
 'Hello, world!'
]

The class-based variant.
>>> from shall import Shell
>>> Shell(has_input=True).run('cat -u').write('Hello, world!').output()
[
 'Hello, world!'
]

Ignoring Large Output

By default, shell captures all output/errors. If you have a command that
generates a large volume of output that you don’t care about, you can ignore
it like so.:

>>> from shell import shell
>>> sh = shell('run_intensive_command -v', record_output=False, record_errors=False)
>>> sh.code
0

The class-based variant.
>>> from shall import Shell
>>> sh = Shell(record_output=False, record_errors=False)
>>> sh.run('run_intensive_command -v')
>>> sh.code
0

What Now?

If you need more advanced functionality, subclassing the Shell class is the
best place to start.

You can find more details about it in the Shell API.

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shell 1.0.1 documentation

Shell API

shell

shell

A better way to run shell commands in Python.

If you just need to quickly run a command, you can use the shell shortcut
function:

>>> from shell import shell
>>> ls = shell('ls')
>>> for file in ls.output():
... print file
'another.txt'

If you need to extend the behavior, you can also use the Shell object:

>>> from shell import Shell
>>> sh = Shell(has_input=True)
>>> cat = sh.run('cat -u')
>>> cat.write('Hello, world!')
>>> cat.output()
['Hello, world!']

	
exception shell.CommandError

	Thrown when a command fails.

	
error_code = 1

	

	
exception shell.MissingCommandException

	Thrown when no command was setup.

	
class shell.Shell(has_input=False, record_output=True, record_errors=True, strip_empty=True)

	Handles executing commands & recording output.

Optionally accepts a has_input parameter, which should be a boolean.
If set to True, the command will wait to execute until you call the
Shell.write method & send input. (Default: False)

Optionally accepts a record_output parameter, which should be a boolean.
If set to True, the stdout from the command will be recorded.
(Default: True)

Optionally accepts a record_errors parameter, which should be a boolean.
If set to True, the stderr from the command will be recorded.
(Default: True)

Optionally accepts a strip_empty parameter, which should be a boolean.
If set to True, only non-empty lines from Shell.output or
Shell.errors will be returned. (Default: True)

	
errors(raw=False)

	Returns the errors from running a command.

Optionally accepts a raw parameter, which should be a boolean. If
raw is set to False, you get an array of lines of errors. If
raw is set to True, the raw string of errors is returned.
(Default: False)

Example:

>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('ls /there-s-no-way-anyone/has/this/directory/please')
>>> sh.errors()
[
 'ls /there-s-no-way-anyone/has/this/directory/please: No such file or directory'
]

	
kill()

	Kills a given process.

Example:

>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('some_long_running_thing')
>>> sh.kill()

	
output(raw=False)

	Returns the output from running a command.

Optionally accepts a raw parameter, which should be a boolean. If
raw is set to False, you get an array of lines of output. If
raw is set to True, the raw string of output is returned.
(Default: False)

Example:

>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('ls ~')
>>> sh.output()
[
 'hello.txt',
 'world.txt',
]

	
run(command)

	Runs a given command.

Requires a command parameter should be either a string command
(easier) or an array of arguments to send as the command (if you know
what you’re doing).

Returns the Shell instance.

Example:

>>> from shell import Shell
>>> sh = Shell()
>>> sh.run('ls- alh')

	
write(the_input)

	If you’re working with an interactive process, sends that input to
the process.

This needs to be used in conjunction with the has_input=True
parameter.

Requires a the_input parameter, which should be a string of the
input to send to the command.

Returns the Shell instance.

Example:

>>> from shell import Shell
>>> sh = Shell(has_input=True)
>>> sh.run('cat -u')
>>> sh.write('Hello world!')

	
exception shell.ShellException

	The base exception for all shell-related errors.

	
shell.shell(command, has_input=False, record_output=True, record_errors=True, strip_empty=True)

	A convenient shortcut for running commands.

Requires a command parameter should be either a string command
(easier) or an array of arguments to send as the command (if you know
what you’re doing).

Optionally accepts a has_input parameter, which should be a boolean.
If set to True, the command will wait to execute until you call the
Shell.write method & send input. (Default: False)

Optionally accepts a record_output parameter, which should be a boolean.
If set to True, the stdout from the command will be recorded.
(Default: True)

Optionally accepts a record_errors parameter, which should be a boolean.
If set to True, the stderr from the command will be recorded.
(Default: True)

Optionally accepts a strip_empty parameter, which should be a boolean.
If set to True, only non-empty lines from Shell.output or
Shell.errors will be returned. (Default: True)

Returns the Shell instance, which has been run with the given command.

Example:

>>> from shell import shell
>>> sh = shell('ls -alh *py')
>>> sh.output()
['hello.py', 'world.py']

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	shell 1.0.1 documentation

Testing shell

shell maintains 100% passing tests at all times. That said, there are
undoubtedly bugs or odd configurations it doesn’t cover.

Setup

Getting setup to run tests (Python 2) looks like:

$ git clone https://github.com/toastdriven/shell
$ cd shell
$ virtualenv env
$. env/bin/activate
$ pip install mock==1.0.1
$ pip install nose==1.3.0

Once that’s setup, setting up for Python 3 looks like:

$ virtualenv -p python3 env3
$. env3/bin/activate
$ pip install mock==1.0.1
$ pip install nose==1.3.0

Running the tests

To run the tests, run the following:

$ nosetests -s tests.py

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	shell 1.0.1 documentation

Contributing

To contribute to shell, it must meet the following criteria:

	Has a failing test case (see tests.py & testing) without the fix

	Has a fix that matches existing style

	Has docstrings

	Adds to the documentation if the change is user-facing

	Is BSD-compatibly licensed

Please create fork on Github, clone your fork, create a new branch, make your
changes on that branch, push it back to Github & open a pull request.

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	shell 1.0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 shell	

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	shell 1.0.1 documentation

Index

 C
 | E
 | K
 | M
 | O
 | R
 | S
 | W

C

 	

 	CommandError

E

 	

 	error_code (shell.CommandError attribute)

 	

 	errors() (shell.Shell method)

K

 	

 	kill() (shell.Shell method)

M

 	

 	MissingCommandException

O

 	

 	output() (shell.Shell method)

R

 	

 	run() (shell.Shell method)

S

 	

 	Shell (class in shell)

 	shell (module)

 	

 	shell() (in module shell)

 	ShellException

W

 	

 	write() (shell.Shell method)

 Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment.png

_static/comment-close.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		shell 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Daniel Lindsley.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

